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Significant Figure Rules  Summary  (see Appendix B.8 for examples and details)

1) All  non-zero numbers (1,2,3,4,5,6,7,8,9) are significant.

2) Zeros:  See Appendix B for  more  examples and explanation; it helps to convert number to their scientific notation  to
analyse zeros.

Zeroes  between non-zero numbers are  significant.

Zeroes  that follow  the decimal point at the end of  a  number are significant.

Zeros used  to locate the decimal point are  not  significant  (e.g. both 3 centimetres and 0.03 meters have only 1 sig.  fig.).

Zeroes  that are part of a number and are  located  before a  “written”  decimal point  are significant  (i.e. the number of 

significant figures in 200. is 3 while  the number in  200 it is only 1.  As  the decimal is not  “written”  in the later example,

the  zeros  in 200  are  only  place holders and are not significant.)

3) Certain values,  such as  those that arise from  the definition of a  term (i.e. many constants)  are  exact  numbers  and are  considered to 

have an infinite number of significant figures following the decimal point  (e.g. by definition there are  exactly  1000 ml in a litre).

4) The result of an addition  and/or subtraction  operation  is  reported to the same number of decimal places  as that in  the term with

the  least  number  of decimal places  (so the number of decimal places in the  calculation terms  limit the significant figures in

your final result).

5) The  result of  a multiplication  and/or division  operation  is rounded off to the same number of significant  figures  as possessed

by the least precise  value  in the calculation  (here you count the number of significant digits in each value in the calculation

and this limits the  number of  significant figures in your  final  result.)

6) Often the answer to a calculation contains  more  digits  than are significant. The following rules  are  used to round-off  final

answers  to their  correct number of digits.

If the  digit  following the last number to be retained is less than 5, all the unwanted  digits  are discarded and the last

number is left unchanged.

If the  digit  following the last number to be retained is greater than 5,  the last  digit  is increased by 1 and the unwanted 

numbers  are discarded.

If the  digit  following the last  number  to be retained is  a  5  then you can either round up or down*.
*How you round only matters when you are rounding multiple  results  as your rounding process can have cumulative  bias  when dealing with more than one

value.  To avoid this, a  common rule  to use  when the number  following the last digit to be retained  is  a  5,  is to  look at the first digit that won’t be retained:  if
it is an odd number, increase the last digit to be retained by l; if  it is an even number, do nothing except discard the numbers that aren’t retained. Zero is 

considered to be an even number.
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Appendix B

Background Quantitative Techniques

B.1 Introduction
Environmental science is essentially concerned with establishing and understanding relationships between phenomena.
As you progress through the course you will be introduced to a number of physical relationships. Such relationships
may be stated in a number of ways ranging from the verbal to the mathematical. For a variety of reasons relationships
that can be expressed in mathematical form are more powerful. In order to help you become familiar with the expres-
sion and analysis of simple mathematical relationships a number of component geographic techniques are outlined. It
is important that you study and understand this section.

B.2 Physical Relationships as Simple Mathematical Expressions
Let us begin by considering the nature of an expression (more usually called a function) written in its mathematical
form. Typically we write:

y = f(x) (B.1)

Here we are expressing, in formal mathematical notation, the idea that y’s dependence on x can be expressed in a
mathematical form. A host of other symbols may be used in place of f , including F, φ, y, and g. As an example,
consider the kinetic energy of an object (you will be introduced to this physical relationship in the course). Repeated
experiments have identified that KE is a function of (or is dependent on) the velocity (v) and mass (m) of the object.
Thus we can write:

KE = f(m, v) (B.2)

Although the above form tells us that KE depends upon the mass and velocity of an object, we cannot say how much
KE results from a given mass moving with a specific velocity. In order to do this we need to define the form of the
functional relationship. Fortunately this has been done, so more specifically:

KE =
1
2
mv2 (B.3)

Here we see another aspect of physical relationships – the constant of proportionality. I.e. for objects of different
masses and velocities, the resultant KE will be different, but the physical law always holds in the above form.

B.3 Manipulation of Simple Mathematical Equations
The study of environmental science necessarily involves some knowledge of mathematically expressed physical rela-
tionships. It is important that you are familiar with them and confident about what they are telling you about the form
of the relationship. As a beginning, consider the idea of re-expressing the above equation:

KE =
1
2
mv2 (B.4)
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so that it is written in the form:

v = f(KE,m) (B.5)

Try to do this. The manipulation of equations is a basic science technique. You will be faced with a number of such
simple expressions during the course.

B.4 The Graphical Analysis of Physical Relationships

A function can be portrayed graphically as a curve. Drawing curves provides information about how two variables are
related. We are concerned with understanding how variables in the environment are interrelated. The relation between
dependent variables (i.e. the variable that is responding – KE in equation B.4) and independent variables (i.e. the
variable that is influencing – m, v in equation B.4) is usually obtained by fitting a curve to the observed values for
those variables. Hopefully the form of the resultant curve is simple enough that we can recognize its mathematical
form (the simplest being a linear relationship).

B.5 Linear Relationships

Data are normally plotted so that the theoretical relationship between the pairs of observations (i.e. the x’s and y’s)
is a linear one. A straight line is the curve where it is easiest to see any discrepancies between experimental points
and the theoretical curve shape. Also, it is easy to see and analyze systematic departures from linearity. It is simple to
write the form of the equation expressing a linear relationship:

y = mx+ b (B.6)

where the parameter m is the slope of the line and parameter b is the value of y when x equals zero. The variable
y is the dependent variable, and x is the independent variable. A line with positive slope m and positive intercept b
is shown in the following figure. The slope of a line can be found by choosing two points on the line (x1, y1) and
(x2, y2). They should be as far apart as possible to minimize the error. Since:

y1 = mx1 + b (B.7)

and

y2 = mx2 + b (B.8)

subtracting the 2 equations from each other and regrouping

(y2 = mx2 + b) − (y1 = mx1 + b) (B.9)
(y2 − y1) = (mx2 −mx1) + (b− b) (B.10)
(y2 − y1) = m(x2 − x1) (B.11)

or, rearranged as

m =
y2 − y1
x2 − x1

=
∆y
∆x

=
rise
run

(B.12)

The intercept b can be found by substituting a point (x, y) into the equation once the slope is known:

b = y1 −mx1 (B.13)

Or sometimes it can be read directly from the graph by noting the y value where the line crosses the y axis (at
x = 0, y = b). So, m and b are two defining constants for each linear relationship.
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B.6 Non Linear Relationships
An initial plot of the data may not appear as a linear relationship. Given the advantages inherent in a linear relationship,
it may be possible to manipulate the data, to obtain a straight line. It is often possible to obtain a straight line by
applying a logarithmic transformation to either one or both of the variables. This is equivalent to plotting the data on
semi-log, or full log paper.

A logarithm applied to only the “y” variable will give a linear plot whenever the data follows a relationship of the
form:

y = bemx (B.14)

which is an exponential relationship. Here y and x are the variables, b and m are constants to be determined (they are
analogous to the intercept b, and slope m), and e is a number, 2.71828 (the base of natural logarithms), although any
other constant (for example 10) could also be used. To make the curve y = bemx plot as a straight line, take logarithms
of both sides as follows:

log y = log b+mx log e (B.15)

To put the equation more clearly in the form of a straight line (y = mx+ b), substitute Y = log y, and M = m log e.
Then the equation becomes:

Y = Mx+ log b (B.16)

The slope of the line, M = m log e gives us the multiplier on the exponent. Similarly, the intercept on the y axis
(x = O) gives the constant b. [NOTE: if natural logarithms are used M = m since ln e = 1]

When logarithms are applied to both variables, the equation of the form:

y = bxm (B.17)

becomes a straight line. This is a “power” relationship because x is raised to the power m. In this equation y and x
are the variables, b is a constant (to be determined) and m is a power (positive, negative, whole or fractional).

Taking logarithms of both sides:
log y = log b+m log x (B.18)

Substituting Y = log y and X = log x, this becomes:

Y = log b+mX (B.19)

which is recognized as the equation of a straight line. The slope of the line gives us the exponent in the power
relationship. The intercept on the y-axis gives the constant b when its anti-logarithm is taken. [The term intercept on
full log paper is a bit of a misnomer since x, and y never equal zero. However X = log x does cross zero when x = 1
(because log 1 = 0).]
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B.7 Graphing Guidelines
It is important to prepare your graphs carefully. The following set of rules should help you construct graphs that are
visually appealing and will aid data analysis.

1. Ideally plot the graph before any data collection equipment is dismantled or before leaving the data collection
site. This allows gaps where data are missing to be filled, and anomalous (extreme) data points can be checked.

2. Plot the dependent variable on the y-axis unless you are plotting depths or heights. For depths or heights the
convention is to always plot these on the y-axis as they represent vertical data regardless of whether they are
dependent of independent variables in the relationship.

3. The graph must have a title. Put the title clearly above the graph. Make the title descriptive in order to explain
what the graph is showing.

4. The graph must have axes labelled with names and units. Draw the axes and select appropriate scales. Mark
the scales at uniform intervals. Make the graph as large as is reasonable, but be sure that the major divisions
of the graph paper have a simple relationship to the scales you have selected. Usually the axes are drawn from
the origin (O,O), but it is not necessary to do so if all the data points plot far from the origin. If the graph is to
demonstrate that y is directly proportional to x, then the origin should be included. Most graphs plot positive
values of x and y (+x and +y, i.e., the first quadrant), but this is not always the case. Plan ahead!

5. Plot the points clearly. Use a pencil! Use a dot enclosed in a circle or a cross. This allows the data point to be
defined precisely. When a more than one curve is to be shown on the same graph, use different symbols for each
set of points (e.g. dots in squares, triangles, etc.).

6. For non-linear curves where you are trying to express a mathematical relationship between y and x, draw a neat
smooth freehand line through, but not necessarily connecting the data points. (NOTE THAT THIS DOES NOT
APPLY TO ALL GRAPHS – see 7). Never join these data using a ruler and the dot-to-dot method. Use a pencil
and draw lightly at first, as you may want to erase parts or sections of the curve and try again. Try to get the
data points evenly spaced about your curve, with roughly equal numbers above and below your line if the data
points do not pass through your curve.

7. For graphs where there is no mathematical expression for the relationship, such as profiles where you are trying
to follow the trend of one variable with the other, draw a neat smooth freehand line passing through each dot.
This method is appropriate as you are interested in the point by point variation. Even though the line must pass
through each point, it is a smooth curve (not drawn with a ruler).

8. For histograms, usually a bar-graph style is used. Choose simple class sizes of approximate size (range /
√
n).

You may plot the raw count data, and/or the percent, on the y-axis.

B.8 Significant Figures
Every measurement is uncertain to some extent. Suppose, for example, that we wish to measure the mass of an object.
If we use a platform balance, we can determine the mass to the nearest 0.1 g.

An analytical balance, on the other hand, is capable of given results correct to the nearest 0.0001 g. The exactness,
or precision, of the measurement depends upon the limitations of the measuring device and the skill with which it is
used.

The precision of a measurement is indicated by the number of figures used to record it. The digits in a properly
recorded measurement are significant figures. These figures include all those that are known with certainty plus one
more which is an estimate.

Suppose that a platform balance is used, and the mass of an object is determined to be 12.3 g. The chances are
slight that the actual mass of the object is exactly 12.3 g, no more nor less. We are sure of the first two figures (the 1
and the 2); we know that the mass is greater than 12 g. The third figure (the 3), however, is somewhat inexact. At best,
it tells us that the true mass lies closer to 12.3 g than to either 12.2 g or 12.4 g. If, for example, the actual mass were
12.28 . . . g or 12.33 . . . g, the value would be correctly recorded in either case as 12.3 g to three significant figures.
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If, in our example, we add a zero to the measurement, we indicate a value containing four significant figures (12.30
g) which is incorrect and misleading. This value indicates that the actual mass is between 12.29 g and 12.31 g. We
have, however, no idea of the magnitude of the integer of the second decimal place since we have determined the
value only to the nearest 0.1 g. The zero does not indicate that the second decimal place is unknown or undetermined.
Rather, it should be interpreted in the same way that any other figure is (see, however, rule 1 that follows). Since the
uncertainty in the measurement lies in the 3, this digit should be the last significant figure reported.

The following rules can be used to determine the proper number of significant figures to be recorded for a mea-
surement.

1. Zeros used to locate the decimal point are not significant. Suppose that the distance between two points is
measured as 3 cm. This measurement could also be expressed as 0.03 m since 1 cm is 0.01 m.

3 cm = 0.03 m

Both values, however, contain only one significant figure. The zeros in the second value, since they merely serve
to locate the decimal point, are not significant. The precision of a measurement cannot be increased by changing
units.

Zeros that arise as a part of a measurement are significant. The number 0.0005030 has four significant figures.
The zeros after 5 are significant. Those preceding the numeral 5 are not significant since they have been added
only to locate the decimal point.

Occasionally, it is difficult to interpret the number of significant figures in a value that contains zeros, such as
600. Are the zeros significant, or do they merely serve to locate the decimal point? This type of problem can
be avoided by using scientific notation. The decimal point is located by the power of 10 employed; the first part
of the term contains only significant figures. The value 600, therefore, can be expressed in any of the following
ways depending upon how precisely the measurement has been made.

6.00× 102 (three significant figures)
6.0× 102 (two significant figures)
6× 102 (one significant figure)

2. Certain values, such as those that arise from the definition of terms, are exact. Far example, by definition, there
are exactly 1000 ml in 1 liter. The value 1000 may be considered to have an infinite number of significant figures
(zeros) following the decimal point.

3. At times, the answer to a calculation contains more figures than are significant. The following rules should be
used to round off such a value to the correct number of digits.

(a) If the figure following the last number to be retained is less than 5, all the unwanted figures are discarded
and the last number is left unchanged.

3.6247 is 3.62 to three significant figures.

(b) If the figure following the last number to be retained is greater than 5 or 5 with other digits following it,
the last figure is increased by 1 and the unwanted figures are discarded.

7.5647 is 7.565 to four significant figures
6.2501 is 6.3 to two significant figures

(c) If the figure following the last figure to be retained is 5 and there are only zeros following the 5, the 5
is discarded and the last figure is increased by 1 if it is an odd number or left unchanged if it is an even
number. In a case of this type, the last figure of the rounded off value is always an even number. Zero is
considered to be an even number.

3.250 is 3.2 to two significant figures
7.635 is 7.64 to three significant figures
8.105 is 8.10 to three significant figures
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The number of significant figures in the answer to a calculation depends upon the numbers of significant
figures in the values used in the calculation. Consider the following problem. If we place 2.38 g of salt in a
container that has a mass of 52.2 g, what will be the mass of the container plus salt? Simple addition gives
54.58 g. But we cannot know the mass of the two together any more precisely than we know the mass of
one alone. The result must be rounded off to the nearest 0.1 g, which gives 54.6 g.

4. The result of an addition or subtraction should be reported to the same number of decimal places as that of the
term with the least number of decimal places. The answer for the addition

161.032 + 5.6 + 32.4524 = 199.0844 (B.20)

should be reported as 199.1 since the number 5.6 has only one digit following the decimal point.

5. The answer to a multiplication or division is rounded off to the same number of significant figures as is possessed
by the least precise term used in the calculation. The result of the multiplication

152.06× 0.24 = 36.4944 (B.21)

should be reported as 36, since the least precise term in the calculation is 0.24 (two significant figures).

B.9 Analysis of Measurement Error
All measurement to some extent is uncertain. This uncertainty can arise from several causes: human error in reading
the instrument, sampling error (the “population” is incorrectly sampled), and poor instrument precision, accuracy or
bias.

Measurement uncertainty is often given by a ± term following the measured value. For example a measurement
of 10.1 ± 0.5m means that the investigator thinks the true value lies between 9.6 and 10.6m. This could be because
the instrument used to make the measurement is only accurate to within 1.0 meters, or because several measurements
were made which had a mean of 10.1m and a standard deviation of 0.5m. When two or more measurements with error
terms are added together, it is too pessimistic to simply add the error terms as well – the errors are equally likely to
cancel each other as add to each other. Instead, the rule for the addition of error terms is to square the errors, add them
up, and take the square root of the sum. For example, if one were adding 3 lengths; 10.1 ± 0.5m, 2.6 ± 0.2m, and
18.2 ± 1.1m, the answer would be:

10.1 + 2.6 + 18.2 = 30.9m± Error (B.22)

with an error term of
Error =

√
0.52 + 0.22 + 1.12 = 1.2m (B.23)

so that the answer would be reported as 30.9 ± 1.2m. For subtraction, the errors are still the same – just as likely to
cancel each other out as to work in the same direction, so the total error follows the same rule as addition.

Estimating the combined error which results when measurements are multiplied or divided is similar to the addition
/ subtraction method, except fractional errors are used in the calculation. For example, suppose a drainage basin has
an area of 5.6 ± 0.1 km2, and the average annual rainfall over that basin is 678 ± 203 mm yr−1. The annual volume
of rain falling on that basin would then be:

5.6× 106m2 × 0.678m = 3.8× 106m3 ± error (B.24)

with an error term of:

Error (fractional) =

√
(
.1
5.6

)2 + (
203
678

)2 (B.25)

=
√

0.00032 + 0.0896 = .30 (B.26)
Error (in m3) = 0.3× 3.8× 106 = 1.1× 106m3 (B.27)

(B.28)

so that the answer would be reported as 3.8 ± 1.1 × 106m3. Estimating the combined error in equations involving
exponents is similar to multiplication and division, except that the exponent is regarded as a multiplier of the fractional
error. For more information, refer to a text such as Haynes (1982).



B-7

B.10 Scientific Notation

Scientific notation is a convenient “shorthand” way of depicting very large or very small numbers without the use of
many zeros. The notation xn means that the number x is multiplied by itself n times (e.g. 23 = 2× 2× 2 = 8) where
n is called the exponent. Similarly x−n with a negative exponent, is the reciprocal of xn, that is x−n = 1/xn (e.g.
2−3 = 1/(2 × 2 × 2) = 1/8 = 0.125). It is often especially convenient to express large or small numbers as powers
of 10 (i.e. 10n or 10−n) and certain of these are given prefixes as listed below.

Standard form for scientific notation is to express numbers so that in the decimal part, there is one digit to the left
of the decimal point:

a.bc× 10d

where a, b, c, d are all numbers from 0-9. Scientific notation is also useful, since it can be immediately clear how
many significant figures there are in a measurement. In the above example, there would be 3 significant figures, since
3 digits are displayed. For example, the number 123 in standard scientific form would be 1.23 × 102. If the number
123 represented a measurement, that we know accurately to 2 decimal places, then it should be written 123.00, or in
standard scientific form: 1.2300× 102.

Prefix Scientific Decimal
notation notation

T tera- one trillion 1012 1, 000, 000, 000, 000
G giga- one billion 109 1, 000, 000, 000
M mega- one million 106 1, 000, 000
k kilo- one thousand 103 1, 000
h hecto- one hundred 102 100
da deka- ten 10 10
d deci- one tenth 10−1 0.1
c centi- one hundredth 10−2 0.01
m milli- one thousandth 10−3 0.001
µ micro- one millionth 10−6 0.000001
n nano- one billionth 10−9 0.000000001
p pico- one trillionth 10−12 0.000000000001

B.11 Greek Alphabet

Lower Capital Name Lower Capital Name
case case
α A alpha ν N nu
β B beta ξ Ξ xi
γ Γ gamma o O omicron
δ ∆ delta π Π pi
ε E epsilon ρ P rho
ζ Z zeta σ Σ sigma
η H eta τ T tau
θ Θ theta υ Υ upsilon
ι I iota φ Φ phi
κ K kappa χ X chi
λ Λ lambda ψ Ψ psi
µ M mu ω Ω omega
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B.12 Mathematical Signs and Symbols
= equals ∼ is similar to
≈ equals approximately 6= does not equal
≡ is identical to, is defined as > is greater than
< is less than ≥ is greater than or equal to
≤ is less than or equal to ± plus or minus (

√
4 = ±2)

∝ is proportional to
∑

the sum of
x the average value of x

B.13 Useful Constants and Formulae
Gravity g = 9.82 m s−2 trigonometric sin θ = y

r

Stephan-Boltzmann constant σ = 5.6697× 10−8 W m−2 K−4 functions cos θ = x
r

rectangle circumference = 2(length + width) tan θ = y
x = m (slope)

rectangle area = length × width csc θ = r
y = 1/ sin θ

circumference of a circle = 2πr (r is radius) sec θ = r
x = 1/ cos θ

area of a circle = πr2 cot θ = x
y = 1/ tan θ

area of a sphere = 4πr2 Pythagorean x2 + y2 = r2

volume of a sphere = 4
3πr

3 theorem
quadratic formula if ax2 + bx+ c = 0, then

x = −b±
√

b2−4ac
2a
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Appendix C

Units, Dimensions, Conversions

C.1 Units and Dimensions

Quantity Dimensions SI c.g.s. British
Basic
Length L 1 m = 102 cm = 3.281 ft
Mass M 1 kg = 103 g = 2.205 lb
Time T 1 s = 1 s = 2.778× 10−4 h
Temperature θ 1 K = 1 K = 1.8 ◦F
Derived
Area L2 1 m2 =104 cm2 = 10.76 ft2

Volume L3 1 m3 = 106 cm3 = 35.31 ft3

Density M L−3 1 kg m−3 = 10−3 g cm−3 = 6.243× 10−2 lb ft−3

Velocity L T−1 1 m s−1 = 102 cm s−1 = 3.281 ft s−1

Acceleration L T−2 1 m s−2 = 102 cm s−2 = 3.281 ft s−2

Force MLT−2 1 kg m s−2 = 105 g cm s−2 = 0.225 lb f
= 1 N (Newton) = 105 dynes (lb force)

Pressure M L−1 T−2 1 kg m−1 s−2 = 10 g cm−1 s−2 = 0.021 lb f ft−2

= 1 Pa (Pascal) = 10−2 hPa (or mb)
Work, energy ML2 T−2 1 kg m2 s−2 =107 g cm2 s−2 = 0.738 ft lb f

= 1 J (Joule) = 107 ergs
Power ML2 T−3 1 kg m2 s−3 =107 g cm2 s−3 = 0.738 ft lb f s−1

= 1 W (Watt) = 107 ergs s−1

Heat, energy Q (= ML2 T−2) 1 J = 0.2388 cal = 9.487 × 10−4 BTU
Heat flux QT−1 1 W = 0.2388 cal s−1 = 3.412 BTU h−1

Heat flux density QL−2 T−1 1 W m−2 = 2.388 × 10−5 = 0.317
cal cm−2 s−1 BTU ft−2 h−1

Latent heat QM−1 1 J kg−1 = 2.388 × 10−4 4.29 × 10−4

cal g−1 BTU lb−1

Specific heat QM−1 θ−1 1 J kg−1 K−1 = 2.388 × 10−4 = 2.388 × 10−4

cal g−1 K−1 BTU lb−1 ◦F−1

Thermal QL−1 θ−1 T−1 1 W m−1 K−1 = 2.388 × 10−3 = 0.578
conductivity cal cm−1 s−1 K−1 BTU ft−1 h−1 ◦F−1

Thermal L2 T−1 1 m2 s−1 = 104 cm2 s−1 = 10.8 ft2 s−1

diffusivity

Table C.1: SI units with c.g.s. and British system equivalents
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C.2 Useful Metric to English Conversions
Length: 1 kilometer (km) = 1000 meters (m) = 0.6214 miles (mi) = 3281 feet (ft)

1 meter = 100 centimeters (cm) = 1.0936 yards (yd) = 3.281 feet = 39.37 inches (in)
1 centimeter = 10 millimeters (mm) = 0.3937 inches
1 micron (µm)= 10−6 meters = 10−4 centimeters = 3.937 ×10−5 inches

Area: 1 square kilometer (1 km2) = 106 sq. meters (m2) = 0.3861 sq. miles (mi2) = 247.1 acres
1 m2 = 104 sq. centimeters (cm2) = 1.196 sq. yards = 10.764 sq. feet = 1550.0 sq. inches

Volume: 1 cubic kilometer = 109 cubic meters (m3) = 0.2399 cubic miles
1 cubic meter = 106 cubic centimeters = 1.308 cubic yards = 35.31 cubic feet = 61024 cubic inches
1 litre (1) = 1000 cm3 = 10−3 cubic meters = 0.264 US gallons (US gal) = 61.024 in3

Mass: 1 metric ton (tonne) = 1000 kilograms = 2204.6 avoirdupois pounds (means pound of mass not force)
1 kilogram (kg) = 1000 grams (g) = 2.2046 avoirdupois pounds

Time: 1 day = 86400 seconds (s)
1 year (yr) = 3.156× 107 seconds

Velocity / 1 meter/second (same as m/s, read meter per second) = 3.281 feet/second = 2.24 miles/hour
Speed: 1 m/s = 3.6 kilometers /hour = 2.237 miles/hour

1 kilometer/hour = 0.62 miles/hour (mi/hr)
1 knot = 1 nautical mile/hour = 1.151 miles/hour = 0.51 m/s = 1.85 km/hr

Force: 1 newton (N) = 1 kilogram meter/(sq. second)
1 newton (N) = 1 kg m s−2 = 0.2248 pounds force

Pressure: 1 atmosphere = 1013.2 hectopascals (hPa) = 101.32 kilopascals (kPa)
1 atmosphere = 14.7 pounds/ sq. inch (lb/in2)
1 atmosphere = 760 millimeters of mercury (mm Hg) = 29.92 inches of mercury
10 millibars (hPa) = 1 kilopascal (kPa)
1 Pascal (Pa) = 1 newton /meter2 = 0.01 millibars (mb) = 0.01 hectopascals (hPa)
1 millibar (mb) = 1 hectopascal (hPa)

Temperature:
Temperature in ◦C = 5/9(temperature in ◦F - 32)
Temperature in ◦F = 9/5(temperature in ◦C) + 32
Temperature in K = temperature in ◦C + 273.15

Energy: 1 joule (J) = 1 newton meter (N m) = 1 kg m2 s−2 = 0.239 calories = 1 watt sec (W s)
1 calorie (cal)= 4.186 joules (J)
1 langley = 1 calorie /square centimeter
1 kilowatt hour = 3.6× 106 J

Power: 1 watt (W) = 1 joule / second (J / s) = 14.3353 calories /minute (cal/min)
1 calorie/second = 4.186 joules /second (J/s) = 4.186 watts (W)
1 calorie/minute = 0.06973 watts (W)
1 horsepower (hp) = 746 watts (W)
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Appendix D: Pages D-1 to D-...
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Example lab questions for each exam will be provided and

posted here throughout the term.
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